Characterisation of Primary Human Hippocampal Astrocyte Cell Culture Following Exposure to Hypoxia

Author:

Nor Nazli Nurul Atikah, ,Muthuraju Sangu,Ahmad Farizan,Mohamed Yusoff Abdul Aziz,Jaafar Hasnan,Shamsuddin Shaharum,Abdullah Jafri Malin, , , , , , , , , , ,

Abstract

Background: The present study aimed to understand the characterisation of human hippocampal astrocyte following hypoxia exposure. Based on the preliminary screening, 15 min was chosen as the time point and the cells were exposed to different oxygen percentages. Methods: The Trypan blue viability assay used to examine cell death. Immunofluorescence assay, glial fibrillary acidic protein (GFAP) was used to portray the morphology of astrocytes. The hypoxia-inducible factor 1 (HIF-1) staining was performed to confirm hypoxia induced cell death and there was a dramatic expression of HIF-1α displayed in exposed astrocyte cells compared to the control. In molecular level, genes were chosen, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), GFAP, HIF-1α and B-cell lymphoma 2 (Bcl-2) and ran the reverse transcription-polymerase chain reaction (RT-PCR). Results: Microscope revealed a filamentous and clear nucleus appearance in a control whereas the rupture nuclei with no rigid structure of the cell were found in the 3% oxygen. The control and hypoxia cells were also stained with the annexin V-fluorescein isothiocyanate (annexin V-FITC). Fluorescence microscope reveals astrocyte cells after hypoxia showed higher expression of nuclei but not in control. Merging PI and FITC showed the differences of nuclei expression between the control and hypoxia. In the molecular analysis, there were significant changes of GFAP, HIF-1α and Bcl-2 in hypoxia exposed cells when compared to the control group. Conclusion: Cells that were exposed to hypoxia (3% oxygen for 15 min) clearly showed damage. General view of human hippocampal astrocyte genomic response to hypoxia was obtained.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3