Optimal Tuning of Random Survival Forest Hyperparameter with an Application to Liver Disease

Author:

Dauda Kazeem Adesina,

Abstract

Background: Random Forest (RF) is a technique that optimises predictive accuracy by fitting an ensemble of trees to stabilise model estimates. The RF techniques were adapted into survival analysis to model the survival of patients with liver disease in order to identify biomarkers that are highly influential in patient prognostics. Methods: The methodology of this study begins by applying the classical Cox proportional hazard (Cox-PH) model and three parametric survival models (exponential, Weibull and lognormal) to the published dataset. The study further applied the supervised learning methods of Tuning Random Survival Forest (TRSF) parameters and the conditional inference Forest (Cforest) to optimally predict patient survival probabilities. Results: The efficiency of these models was compared using the Akaike information criteria (AIC) and integrated Brier score (IBS). The results revealed that the Cox-PH model (AIC = 185.7233) outperforms the three classical models. We further analysed these data to observe the functional relationships that exist between the patient survival function and the covariates using TRSF. Conclusion: The IBS result of the TRFS demonstrated satisfactory performance over other methods. Ultimately, it was observed from the TRSF results that some of the covariates contributed positively and negatively to patient survival prognostics.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3