Synthesis and Characterisations of Reduced Graphene Oxide Prepared by Microwave Irradiation with Sonication

Author:

Fauzi Fika1,Azizi Fayyad1,Musawwa Muhammad Miqdam2,Dwandaru Wipsar Sunu Brams1

Affiliation:

1. Department of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jalan Colombo No. 1, Karangmalang, Yogyakarta, 55281, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jalan Kaliurang Km 14, Sleman, Yogyakarta, 55584, Indonesia

Abstract

Recently, reducing graphene oxide (GO) through microwave irradiation has been extensively explored in order to scale up the mass production of graphene. We report the simple technique to reduce GO by means of microwave irradiation combined with a sonication technique. The microwave-reduced GO (MWrGO) is formed by exposing a microwave onto GO powder in order to reduce the oxygen functional group and then followed by exfoliating via a sonication method. The time exposure of the microwave irradiation was 20 min with the powers of 450 W and 800 W. The UV-visible (UV-vis) spectra showed the evolution of GO into MWrGO indicated by the red shift of the absorption peak from 230 nm to 267 nm and disappearance of the shouldering peak at 300 nm. The reduction of the oxygen functional group has been proved by Fourier transform infrared (FTIR) spectra. Furthermore, the scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) data demonstrated further confirmation of the reduction of GO and the formation of basal planes of sp2 carbon clusters of the sample due to the treatment. The EDS spectra revealed that the MWrGO by 800-W-irradiation had much less oxygen functional groups and much more carbon content than GO. The proposed synthesis method is simple and readily controlled for a mass production of graphene from GO.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Physics and Astronomy,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3