Enhanced Characterisation Studies and Synthesis of Undoped and Copper Doped-Organic Nonlinear Optical Single Crystal: L-Alanine Aluminium Nitrate

Author:

Pandey Anand Kumar, ,Pratap Singh Raghvendra,Jawhari Ahmed Hussain,Singh Ritu, , ,

Abstract

Single crystals of untreated and copper (Cu2+) metal ion-doped L-alanine aluminium nitrate (LAAN), a room-temperature slow evaporation organic nonlinear optical material. Single crystals were studied for structural, spectral, optical, hardness, secondorder non-linear optical, electrical [(alternating current (AC) and direct current (DC)], and photoconductivity properties as they grew. Crystallinity, monoclinic structure with space collection P21, and lattice specifications were deliberate using single crystal X-ray diffraction investigation. The existence of functional clusters is revealed by the spectral properties, and the means of vibration of various molecular clusters existing in LAAN were evaluated using Fourier transform infrared (FTIR). The low cut-off wavelength and transmittance properties were determined using optical analysis. The band gap energy of LAAN and Cu-doped LAAN crystals was estimated to be 3.40 eV and 2.70 eV, respectively, using the Tauc plot. It was revealed that pure crystals had a lower dielectric constant than crystals that had been doped with copper. After doping with rising temperatures, AC conductivity started to rise. With the use of the Kurtz and Perry approach, the effectiveness of the grown crystal’s second harmonic generation was computed, Cu-doped LAAN was discovered to be 3.3 times more prominent than potassium dihydrogen phosphate (KDP) and 2.2 times more prominent than pure LAAN crystals. The nonlinear optical characteristics of LAAN crystals have therefore been improved by copper doping. It is most suited for use in electro-optic applications like laser technology, telecommunications and optical signal processing because of its negative photoconductivity.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3