Small extracellular vesicles facilitate epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps via the miR-375-3p/QKI axis

Author:

Wang X,Zheng R,Liang W,Qiu H,Yuan T,Wang W,Deng H,Kong W,Chen J,Bai Y,Li Y,Chen Y,Wu Q,Wu S,Huang X,Shi Z,Fu Q,Zhang Y,Yang Q

Abstract

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a crucial role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the involvement of small extracellular vesicles (sEVs) in EMT and their contributions to CRSwNP has not been extensively investigated. METHODS: SEVs were isolated from nasal mucosa through ultracentrifugation. MicroRNA sequencing and reverse-transcription quantitative polymerase chain reaction were employed to analyze the differential expression of microRNAs carried by sEVs. Human nasal epithelial cells (hNECs) were used to assess the EMT-inducing effect of sEVs/microRNAs. EMT-associated markers were detected by western blotting and immunofluorescence. Dual-luciferase reporter assay was performed to determine the target gene of miR-375-3p. MicroRNA mimic, lentiviral, and plasmid transduction were used for functional experiments. RESULTS: In line with the greater EMT status in eosinophilic CRSwNP (ENP), sEVs derived from ENP (ENP-sEVs) could induce EMT in hNECs. MiR-375-3p was elevated in ENP-sEVs compared to that in control and nonENP. MiR-375- 3p carried by ENP-sEVs facilitated EMT by directly targeting KH domain containing RNA binding (QKI) at seed sequences of 913-919, 1025-1033, and 2438-2444 in 3’-untranslated region. Inhibition of QKI by miR-375-3p overexpression promoted EMT, which could be reversed by restoration of QKI. Furthermore, the abundance of miR-375-3p in sEVs was closely correlated with the clinical symptom score and disease severity. CONCLUSIONS:MiR-375-3p-enriched sEVs facilitated EMT by suppressing QKI in hNECs. The association of miR-375-3p with disease severity underscores its potential as both a diagnostic marker and a therapeutic target for the innovative management of CRSwNP.

Publisher

Stichting Nase

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3