Unicorn, Hare, or Tortoise? Using Machine Learning to Predict Working Memory Training Performance

Author:

Feng YiORCID,Pahor AnjaORCID,Seitz Aaron R.ORCID,Barbour Dennis L.ORCID,Jaeggi Susanne M.ORCID

Abstract

People differ considerably in the extent to which they benefit from working memory (WM) training. Although there is increasing research focusing on individual differences associated with WM training outcomes, we still lack an understanding of which specific individual differences, and in what combination, contribute to inter-individual variations in training trajectories. In the current study, 568 undergraduates completed one of several N-back intervention variants over the course of two weeks. Participants’ training trajectories were clustered into three distinct training patterns (high performers, intermediate performers, and low performers). We applied machine-learning algorithms to train a binary tree model to predict individuals’ training patterns relying on several individual difference variables that have been identified as relevant in previous literature. These individual difference variables included pre-existing cognitive abilities, personality characteristics, motivational factors, video game experience, health status, bilingualism, and socioeconomic status. We found that our classification model showed good predictive power in distinguishing between high performers and relatively lower performers. Furthermore, we found that openness and pre-existing WM capacity to be the two most important factors in distinguishing between high and low performers. However, among low performers, openness and video game background were the most significant predictors of their learning persistence. In conclusion, it is possible to predict individual training performance using participant characteristics before training, which could inform the development of personalized interventions.

Publisher

Ubiquity Press, Ltd.

Subject

Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3