Subject
Library and Information Sciences,Information Systems,General Arts and Humanities
Reference18 articles.
1. Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3(30), 774. https://quanteda.io. DOI: 10.21105/joss.00774.
2. Deutsche Forschungsgemeinschaft. (2023). CHYLSA – Advanced sentiment analysis for understanding affective-aesthetic responses to literary texts: A computational and experimental psychology approach to children’s literature. Last accessed 24 May 2023. https://gepris.dfg.de/gepris/projekt/424250469?language=en.
3. Cutting the Gordian Knot: The Moving-Average Type–Token Ratio (MATTR);Journal of Quantitative Linguistics,2010