VesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data

Author:

Xu Marshall1ORCID,Ribeiro Fernanda L.1,Barth Markus1,Bernier Michaël23,Bollmann Steffen11,Chatterjee Soumick445,Cognolato Francesco11,Gulban Omer F.67,Itkyal Vaibhavi8,Liu Siyu19,Mattern Hendrik41011,Polimeni Jonathan R.2312,Shaw Thomas B.1,Speck Oliver41011,Bollmann Saskia1

Affiliation:

1. University of Queensland

2. Massachusetts General Hospital

3. Harvard Medical School

4. Otto-von-Guericke-University

5. Human Technopole

6. Maastricht University

7. Brain Innovation

8. Indian Institute of Technology

9. CSIRO

10. German Center for Neurodegenerative Diseases

11. Center for Behavioral Brain Sciences

12. Massachusetts Institute of Technology

Abstract

Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain’s blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we explore their application to high-resolution MRA data and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation toolbox, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. To enhance the segmentation models’ robustness and accuracy, VesselBoost employs an innovative data augmentation technique, which captures the resemblance of vascular structures across scales by zooming in or out on input image patches—virtually creating diverse scale vascular data. This approach enables detailed vascular segmentation and ensures the model’s ability to generalize across various scales of vascular structures.

Publisher

Organization for Human Brain Mapping

Reference36 articles.

1. An Improved 3D U-Net-based Deep Learning System for Brain Tumor Segmentation Using Multi-Modal MRI;S Ali;Multimedia Tools and Applications,2024

2. Inception-UDet: An Improved U-Net Archi- tecture for Brain Tumor Segmentation;I. Aboussaleh;Annals of Data Science,2024

3. Automatic differentiation in PyTorch;A. Paszke;NIPS 2017 Autodiff Workshop,2017

4. Tversky loss function for image segmentation using 3D fully convolutional deep networks;S. S. M. Salehi;arXiv,2017

5. N4ITK: Improved N3 Bias Correction;N. J. Tustison;IEEE Transactions on Medical Imaging,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3