An Empirically Driven Guide on Using Bayes Factors for M/EEG Decoding

Author:

Teichmann Lina1,Moerel Denise2,Baker Chris1,Grootswagers Tijl3

Affiliation:

1. Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA

2. Department of Cognitive Science, Macquarie University, Sydney, Australia

3. The MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Sydney, Australia

Abstract

Bayes factors can be used to provide quantifiable evidence for contrasting hypotheses and have thus become increasingly popular in cognitive science. However, Bayes factors are rarely used to statistically assess the results of neuroimaging experiments. Here, we provide an empirically driven guide on implementing Bayes factors for time-series neural decoding results. Using real and simulated magnetoencephalography (MEG) data, we examine how parameters such as the shape of the prior and data size affect Bayes factors. Additionally, we discuss the benefits Bayes factors bring to analysing multivariate pattern analysis data and show how using Bayes factors can be used instead or in addition to traditional frequentist approaches.

Publisher

Organization for Human Brain Mapping

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3