Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection

Author:

Pardede Jasman, ,Sitohang Benhard,Akbar Saiful,Khodra Masayu Leylia

Abstract

In previous studies, researchers have determined the classification of fruit ripeness using the feature descriptor using color features (RGB, GSL, HSV, and L * a * b *). However, the performance from the experimental results obtained still yields results that are less than the maximum, viz the maximal accuracy is only 76%. Today, transfer learning techniques have been applied successfully in many real-world applications. For this reason, researchers propose transfer learning techniques using the VGG16 model. The proposed architecture uses VGG16 without the top layer. The top layer of the VGG16 replaced by adding a Multilayer Perceptron (MLP) block. The MLP block contains Flatten layer, a Dense layer, and Regularizes. The output of the MLP block uses the softmax activation function. There are three Regularizes that considered in the MLP block namely Dropout, Batch Normalization, and Regularizes kernels. The Regularizes selected are intended to reduce overfitting. The proposed architecture conducted on a fruit ripeness dataset that was created by researchers. Based on the experimental results found that the performance of the proposed architecture has better performance. Determination of the type of Regularizes is very influential on system performance. The best performance obtained on the MLP block that has Dropout 0.5 with increased accuracy reaching 18.42%. The Batch Normalization and the Regularizes kernels performance increased the accuracy amount of 10.52% and 2.63%, respectively. This study shows that the performance of deep learning using transfer learning always gets better performance than using machine learning with traditional feature extraction to determines fruit ripeness detection. This study gives also declaring that Dropout is the best technique to reduce overfitting in transfer learning.

Publisher

MECS Publisher

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Modelling and Simulation,Signal Processing

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fruit Classification with Deep Transfer Learning using Image Processing;2023 7th International Conference on Information Technology (InCIT);2023-11-16

2. Application of Convolutional Neural Network to Gripping Comfort Evaluation Using Gripping Posture Image;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-07-20

3. PikFresh - Fruit Quality Detection using ResNet50;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

4. VGG16 feature selection using PCA-big bang big algorithm;Journal of Intelligent & Fuzzy Systems;2023-07-02

5. An improved method for predicting soluble solids content in apples by heterogeneous transfer learning and near-infrared spectroscopy;Computers and Electronics in Agriculture;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3