Author:
Dalkani Hadis, ,Mojarad Musa,Arfaeinia Hassan
Abstract
Given the problem of electrical energy storage, it is critical to predict the amount of load required in order to have a reliable and stable power distribution network. Predicting electricity consumption of subscribers and analyzing their consumption behavior under the influence of various factors and time variables is important. Given the large volume of subscriber consumption data and the effective factors, it is only possible to analyze the data using new information technology tools such as data mining. In this paper, feature selection, clustering and Markov process techniques are used to model and predict the power consumption data of subscribers. First, the selection of a subset of effective features is based on the combined PCA approach and the Firefly algorithm. Subscribers are then clustered based on the features selected by the K-means. Finally, subscriber behavior patterns are modeled to predict consumption using the Markov process on high-risk clusters. This study is simulated based on the data of electricity subscribers in Bushehr-Iran Power Distribution Company. The simulation results show the superiority of the proposed model over other similar algorithms such as LASSO-QRNN and HyFIS. The accuracy of power consumption prediction in the proposed method is about 1% compared to LASSO-QRNN and about 0.5% compared to HyFIS.
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Modelling and Simulation,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献