Molecular Docking Study of Binding of Perylene Di-imide to a Bio Molecular Human Telomeric G-quadruplex

Author:

Mishra Vandana,Tiwari Rakesh Kumar

Abstract

Human telomeres are comprised of d(TTAGGG) repeats involved in the formation of G-quadruplex DNA structures. Ligands stabilizing these G-quadruplex DNA structures are potential inhibitors of the cancer cell-associated enzyme telomerase. In human cells , telomerase adds multiple copies of the 5’-GGTTAG-3’ motif to the end of the G-strand of the telomere and in the majority of tumor cells it results over-expressed. Several structural studies have revealed a diversity of topologies for telomeric quadruplexes, which are sensitive to the nature of the cations present, to the flanking sequences, and probably also to concentration, as confirmed by the different conformations deposited in the Protein Data Bank (PDB). The existence   of   different polymorphism   in the DNA quadruplex and the absence of a uniquely precise binding site give rise to check docking approach . As target we have selected six different experimental models of the human telomeric sequence d[AG3(T2AG3)3] based on three G-tetrads and as ligands the   perylene  di-imide . We checked out molecular docking simulation of binding of perylene di-imide to a slected G-quadruplex using dock 6.9 to examine whether or not to reproduced the loop binding mode of perylene di-imide. The simulation gave the two highest rank docking pose of perylene di-imide and the binding mode were external stacking on the terminal guanine tetrade and the groove binding.

Publisher

World Science Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3