An artificial neural network for analysis of ionograms obtained by ionosonde at the Ukrainian Antarctic Akademik Vernadsky station

Author:

Bogomaz O., ,Shulha M.,Kotov D.,Koloskov A.,Zalizovski A., , , , , , , , , ,

Abstract

The article presents the developed artificial neural network for F2 ionosphere layer traces scaling on ionograms obtained using the IPS-42 ionosonde installed at the Ukrainian Antarctic Akademik Vernadsky station. The parameters of the IPS-42 ionosonde and the features of the data obtained with it, in particular the format of the output files, are presented. The advantages of using an artificial neural network for identification of traces on ionograms are demonstrated. Usually, an automatic scaling of the ionograms requires a lot of machine time however implementation of an artificial neural network speeds up computations significantly allowing to process incoming ionograms even in the real time mode. The choice of architecture of an artificial neural network is substantiated. The U-Net architecture was chosen. The method of creating and training the neural network is described. The artificial neural network development process included choosing the number of layers, types of activation functions, optimization method and input layer size. Software developed was written in Python programming language with use of the Keras library. Examples of data used for training of the artificial neural network are shown. The results of testing an artificial neural network are presented. The data obtained with the artificial neural network are compared with the results of manual processing of ionograms. Data for training the artificial neural network were obtained in March, 2017 using the IPS-42 ionosonde installed at the Ukrainian Antarctic Akademik Vernadsky station; data for testing were obtained in 2017 and 2020. The developed artificial neural network has minor flaws but they are easily eliminated by retraining the network on a more representative dataset (obtained in various years and seasons). The general results of testing indicate good prospects in further developing this artificial neural network and software for working with it.

Publisher

State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine

Reference21 articles.

1. Bogomaz, O. V., Kotov, D. V., Shulha, M. O., & Gorobets, M. V. (2019b). Comparison of the F2 layer peak height variations obtained by ionosonde and incoherent scatter radar. Bulletin of the National Technical University "KhPI", 25(1350), 58-61. Retrieved November 3, 2020, from http://iion.org.ua/article/bulletin-25/

2. Bogomaz, O. V., Shulha, M. O., Kotov, D. V., Zhivolup, T. G., Koloskov, A. V., Zalizovski, A. V., Kashcheyev, S. B., Reznychenko, A. I., Hairston, M. R., & Truhlik, V. (2019a). Ionosphere over Ukrainian Antarctic Akademik Vernadsky station under minima of solar and magnetic activities, and daily insolation: case study for June 2019. Ukrainian Antarctic Journal, 2(19), 84-93. https://doi.org/10.33275/1727-7485.2(19).2019.154

3. Broom, S. M. (1984). A new ionosonde for Argentine Islands ionospheric observatory, Faraday Station. British Antarctic Survey Bulletin, 62, 1-6. Retrieved November 3, 2020, from http://nora.nerc.ac.uk/id/eprint/523821/

4. Bullett, T., Malagnini, A., Pezzopane, M., & Scotto, C. (2010). Application of Autoscala to ionograms recorded by the VIPIR ionosonde. Advances in Space Research, 45(9), 1156-1172. https://doi.org/10.1016/j.asr.2010.01.024

5. Bushaev, V. (2018). Adam - latest trends in deep learning optimization. Towards Data Science. https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6-be9a291375c

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3