Author:
Hadianto Nur,Novitasari Hafifah Bella,Rahmawati Ami
Abstract
Payment of loans that experience difficulties in repayment or often called bad credit is a very detrimental thing for the bank, with the occurrence of bad credit the bank does not have the maximum ability to make money for investment. Choosing the right customer must go through the right analysis because the decision to approve or disagree with the loan is the main point that determines the possibility of bad credit. This study aims to classify eligible customers to obtain loans by taking into account existing parameters such as age, total income, number of families, monthly expenditure average, education level and others. This study uses a data mining classification method with a neural network model, to assess the accuracy of data processing using rapid miners then proceed with measurements using confusion matrix, ROC curve. The results of the neural network algorithm after going through confusion matrix testing, the ROC curve shows a very high accuracy value, and the dominant value of AUC and algorithm. The accuracy value is 98.24% with AUC of 0.979
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献