KLASIFIKASI PEMINJAMAN NASABAH BANK MENGGUNAKAN METODE NEURAL NETWORK

Author:

Hadianto Nur,Novitasari Hafifah Bella,Rahmawati Ami

Abstract

Payment of loans that experience difficulties in repayment or often called bad credit is a very detrimental thing for the bank, with the occurrence of bad credit the bank does not have the maximum ability to make money for investment. Choosing the right customer must go through the right analysis because the decision to approve or disagree with the loan is the main point that determines the possibility of bad credit. This study aims to classify eligible customers to obtain loans by taking into account existing parameters such as age, total income, number of families, monthly expenditure average, education level and others. This study uses a data mining classification method with a neural network model, to assess the accuracy of data processing using rapid miners then proceed with measurements using confusion matrix, ROC curve. The results of the neural network algorithm after going through confusion matrix testing, the ROC curve shows a very high accuracy value, and the dominant value of AUC and algorithm. The accuracy value is 98.24% with AUC of 0.979

Publisher

PPPM STMIK Nusa Mandiri

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3