Prediction the number of hunting animal populations in the Yaroslavl region based on matrix verified models

Author:

Kaledin A. P.,

Abstract

Prediction the dynamics of the level and structure of regional hunting resources is relevant from the standpoint of their rational use. Matrix models are widely used to make predictions on the dynamics of hunting animal populations. The algorithm of the modified P. H. Leslie matrix model with a correction matrix is used. The accuracy of predictions on the dynamics of hunting animal populations based on matrix models is improved by their verification. In the proposed study, model verification is considered not only as a method for determining the correspondence of the model to the corresponding modeling object, but also as a tool for clarifying model parameters under conditions of possible uncertainty of information. A retrospective verification of models of the dynamics of prediction the number of hunting animal populations is considered, the results of which are verified by prospective verification. On the basis of retrospective verification under the conditions of incompleteness of the available information, the parameters of the models are clarified. The proposed prediction algorithm works well with a steady increase in the population of hunting animals. In practice, there are regressive and unstable scenarios of the dynamics of the number of hunting animal populations. In a regressive and stable scenario, the proposed algorithm for predicting the number of hunting animal populations works well, but regressive results give predictions for a decrease and even degradation of the population. In this case, the prediction tasks change. For example, for determining the percentage of production of a given type of hunting animals while maintaining the population size or its insignificant growth. As a result of the research, predictions were made on the dynamics of the populations of the main hunting animals in the Yaroslavl region (moose, bear, fox, white hare, grouse and capercaillie) based on verified matrix models.

Publisher

PANORAMA Publishing House

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Reference10 articles.

1. 1. Каледин А. П. Основы охотничьего ресурсоведения: учебник / А. П. Каледин, А. И. Филатов, А. М. Остапчук. - Реутов: Изд-во ЭРА, 2018. - 344 с.

2. 2. Каледин А. П. Охотоведение: учебное пособие. - изд. 3-е, исп. /А. П. Каледин. - Реутов: Изд-во ЭРА, 2022. - С. 256-275.

3. 3. Каледин А. П. Прогнозирование динамики численности охотничьих животных в Российской Федерации на основе модельных экспериментов / А. П. Каледин, А. А. Филатов, А. М. Остапчук //Международный научный журнал. - 2017. - № 2. - С. 66-70.

4. 4. Каледин А. П. Система моделей организации, управления и развития охотничьего хозяйства РФ /А. П. Каледин, Э.Г Абдулла-Заде, А. И. Филатов // Международный сельскохозяйственный журнал. -2013. - № 1. - С. 35-36

5. 5. Моделирование динамики популяций охотничьих животных в Ленинградской области: формирование и верификация модели, прогноз развития популяции /А. П. Каледин, Ю. А. Юлдашбаев, А. И. Филатов, А. М. Остапчук //Аграрная наука. - 2020. - № 3. -С. 91-95. DOI: 10.32634/0869-8155-2020-336-3-91-95.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3