Clustering Using the k-Means Method, Modeling the Stability of Russian Banking Companies Using the Dl-Model "Random Forest" in Modern Conditions

Author:

,Lomakin N. I.ORCID,Maramygin M. S.ORCID, ,Boriskina T. B.ORCID, ,Kuzmina T. I.ORCID, ,Samorodova I. A.ORCID, ,Polozhentseva Yu. S.ORCID, ,Ibrahim M.ORCID,

Abstract

The article discusses some theoretical aspects of modeling the sustainable development of the Russian banking system. The relevance of the study lies in the fact that in modern conditions, approaches to ensuring the sustainable development of the banking system using artificial intelligence are increasingly being used. The novelty lies in the fact that the authors have proposed approaches that allow us to identify existing patterns and formulate a forecast of an indicator of interest based on artificial intelligence. At the same time, the developed digital model involves its training on a generated dataset, including a data set that reflects the stability and dynamics of development of Russian banks. The work used such methods as monographic, analytical, k-means method, DL model "Random Forest" on the Colab service using the Python language and the libraries pandas, GridSearchCV, sklearn and others. The practical signifi cance of the study is that the resulting forecast can be used in practice regarding monitoring and forecasting the sustainable development of the banking system. The criterion for the forecast accuracy of the DL model is the average forecast error (MAE). The proposed DL model uses the best decision tree, which has optimal hyperparameter settings, for example, the depth of the tree is ten layers, the number of estimators (trees) in the ensemble is five.

Publisher

PANORAMA Publishing House

Reference25 articles.

1. Cognitive Model of Financial Stability of the Domestic Economy Based on Artificial Intelligence in Conditions of Uncertainty and Risk;Lomakin;International Journal of Technology Vol 13 no 7,2022

2. 2. Lomakin, N. I., Maramygin, M. S., Kuzmina, T. I. (2023). Formation of a forecast for the sustainability of the Russian economy based on the AI system "Random Forest". In: Intelligent engineering economics and Industry 5.0 (INPROM): collection. tr. VIII Intl. scientific-practical conf. (St. Petersburg, April 27-30, 2023). St. Petersburg: Politeh-Press, pp. 91-95. - Available at: https://labec.spbstu.ru/userfiles/files/inprom-21/content_inprom_2023. pdf (accessed: 10.02.2024). (In Russian)

3. Prognozirovanie razvitiia otechestvennoi ekonomiki sistemoi iskusstvennogo intellekta, otsenka riska i ustoichivosti finansovogo sektora [Forecasting the development of the domestic economy using an artificial intelligence system, assessing the risk and stability of the financial sector];Lomakin;Mezhdunarodnaya Ekonomika [The World Economics] Vol 19 no 8,2022

4. 4. Vishnyakov, I. P. (2017). Metodologiia analiza ustoichivosti regional'noi bankovskoi sistemy v imperative ustoichivosti bankovskoi sistemy v tselom [Methodology for analyzing the sustainability of the regional banking system in the imperative of sustainability of the banking system as a whole]. Finansovye issledovaniia [Financial research]. No. 3 (56), pp. 46-53. (In Russian)

5. 5. Asaeva, O. N. (2018). Razvitie i sovershenstvovanie sistemy mer obespecheniia ustoichivosti bankovskoi sistemy Rossiiskoi Federatsii [Development and improvement of the system of measures to ensure the stability of the banking system of the Russian Federation]. Molodoi uchenyi [Young scientist]. No. 50 (236), pp. 111-114. (In Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3