Phytoecological mapping of the Northern Caspian Region

Author:

Safronova I. N.1

Affiliation:

1. Komarov Botanical Institute of the Russian Academy of Sciences

Abstract

We have performed the phytoecological mapping of the Northern Caspian Region in scale 1 : 2 500 000. The territory includes the Caspian Lowland and the Mangyshlak Peninsula between 45°-53°30 E and 49°-42° N. The earlier published maps of the same scale showed either vegetation of the Caspian Lowland or that of the Mangyshlak Peninsula. We have shown both territories on one map, which has permitted to reflect the peculiar features of the Northern Caspian Region: extensive distribution of the dwarf-semishrub communities not only in desert but also in the steppe zone; differences of desert vegetation cover between areas west and east of the Ural River; the running of zonal steppe/desert boundary along 44° N on the west coast of Caspian Sea whereas on the east coast the middle deserts occur at the same latitude: etc. Our studies were based upon a broad understanding of the desert and steppe types of vegetation. To the desert type of vegetation on the plains of Caspian Region and Turan belong the communities of xerophilous and hyperxerophilous micro- and mesothermic plants of various growth forms, mostly dwarf-semishrubs, semishrubs and shrubs, to the steppe type - plant communities consisting mostly of perennial more or less microthermic xerophilous herbaceous plants, predominantly of bunchgrasses, locally tufted sedges and perennial herbs. One should add that stony-rubble and salted substrates in steppe zone are characterized by distribution of dwarf-semishrub communities. Some researchers, apart from steppe and desert zones distinguish semidesert one in the Caspian Lowland, however it is accepted that there is no semidesert type of vegetation. Therefore it is difficult to agree with the recognition of the semidesert zone. The drawing of zonal boundary between steppe and desert in the Northern Caspian Region involves definite difficulties depending on environmental features of the region and strong anthropogenic press. So, on sand massifs and saline soils vegetation is the same both in desert and steppe zones. Vegetation cover of the Western Caspian Region is transformed considerably under anthropogenic influence. It is known that in steppe region at ploughing up of the worm- wood-bunchgrass steppes one of the stages of restoration of fallow lands is the wormwood one, physiognomically similar to desert. The same appearance is assumed by steppe at the strong grazing when grasses are destroyed and wormwoods is growing up. Such anthropogenic wormwood communities are widely spread at the boundary between zones. This resulted in that on earlier published vegetation maps the desert zone in the interfluve of Volga-Ural was shifted fairly far to the North up to 49°N. At present we believe that it is possible to assign the northern part of Ryn-Sands to steppe zone and to draw the zonal boundary along the latitude of 48°30 N. The boundary is determined by climate, geological history, hydrology, edaphic conditions and. vegetation. Somewhat differently than earlier we draw the zonal boundary in the Caspian Lowland between the Volga River and the Ergeni Height. It goes from Prishib's settlement to south-west to Yashkul's settlement (45°30 E) and further westward of Achinery's settlement to south-east up to the Kuma River. We could specify its position since during the last years the part of fallow lands, occupying large areas to the west and north of this line, restored up to steppes of Stipa sareptana-Artemisia lerchiana and those of Agropyron desertorum-Artemisia lerchiana. In the course of cartographic works we compiled the vegetation map of the Northern Caspian Region. This map became the base for series of maps: phytoecological one. the map of dominating plant formations, the map of edaphic variants of plant communities, the map of transformation of ecosystems of the Lower Volga Region. Phytoecological map (Fig. 1) gives an idea of latitudinal differentiation of vegetation in the Northern Caspian Region which depends on climate, and reflects its interrelation with soil conditions on plains and with lithological composition in low mountains. The map of edaphic variants of plant communities (Fig. 2) well reflects the peculiar features of various parts of the Northern Caspian Region: between the Terek River and the Ural River psammophyte and hemipsammophyte variants there predominate; east of the Ural River halophyte ones prevail: on the Mangyshlak Peninsula all variants are represented. Pelitophyte variants predominate in the west of the Region and along its northern margin within the limits of steppe zone. On the map of dominating formations (Fig. 3) we could show the distribution of 17 formations and 1 group of formations. A part of formations is restricted exclusively to steppe zone or desert zone, another part is spread throughout the both. This map helps to understand such peculiar feature of the region as wide distribution of dwarf-semishrub communities not only in deserts but also in steppes, which is due to presence of large areas of sands and saline soils in region. The Caspian Region was intensively used by man for a long time. By present time vegetation cover is noticeable transformed. We tried to show cartographically the degree of this transformation and differences in economical utilization of the Lower Volga area (Fig. 4). 4 degrees of transformation are distinguished: Tl-weak, T2-moderate, T3-strong, T4-very strong. Each polygon is considered from standpoint of type of anthropogenic influence: such as pastures (index «a»), fallow lands (index «b»). For pastures degree of grazing is recorded - from weak grazing to overgrazing. For fallow lands the stage of restoration is detected: from the tall weed one up to the perennial herb one conventionally restored.

Publisher

Komarov Botanical Institute of the Russian Academy of Sciences

Reference70 articles.

1. Андрющенко О. Н. Естественноисторическис районы Прикаспийской низменности (междуречье Волга–Урал) // Труды геогр. фак. (Белорус. ун-т). Минск, 1958. С. 137–219.

2. Биткаева Л. X., Николаев В. А. Ландшафты и антропогенное опустынивание Терских песков. М., 2001. 172 с.

3. Благовещенский Э. Н. О пустынном типе растительности // Проблемы освоения пустынь. 1968. № 5. С. 14–24.

4. Буяновский М. С., Доскач А. Г., Фридланд В. М. Природа и сельское хозяйство Волго-Уральского междуречья. М., 1956. 232с.

5. Быков Б. А. Растительность и кормовые ресурсы Западного Казахстана. Алма-Ата, 1955. 109 с.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3