Resistance screening and in-vitro efficacy of fungicides for the management of dry root rot of chickpea caused by Rhizoctonia bataticola
-
Published:2022-09-18
Issue:3
Volume:23
Page:8-13
-
ISSN:2278-5124
-
Container-title:Environment Conservation Journal
-
language:
-
Short-container-title:ECJ
Author:
Bankoliya Mukesh,Yadav V.K.,Kumar Ashish,Amrate Pawan,Bhatt Jayant
Abstract
Dry root rot caused by Rhizoctonia bataticola (Taub.) Butler is an emerging threat for chickpea production. It is among one of the chief and common soil borne diseases of chickpea. The present investigation was conducted firstly to identify the resistant source for dry root rot in chickpea and secondly to evaluate the efficacy of different fungicides in inhibiting the growth of R. bataticola under in vitro conditions. Screening of a set of 50 chickpea entries resulted in identification of three entries namely ICCV 191317, ICCV 191306, and Ujjain 21 as moderately resistant to dry root rot of chickpea. No entry could be identified as completely resistant for dry root rot in chickpea. Further, among the different fungicides tested, pyraclostrobin alone and in combination of Thiophanate methyl completely checked the growth of R. bataticola at 100 ppm concentration under in vitro conditions. However, another combination product of fungicides namely carboxin + thiram and carbendazim + mancozeb also showed complete inhibition in growth of test pathogen at higher concentration of fungicides i.e. at 300 ppm concentration.The identified moderately resistant genotypes could be a useful resource for development of resistant varieties in chickpea for dry root rot using molecular breeding approaches.
Publisher
Action For Sustainable Efficacious Development and Awareness
Reference21 articles.
1. Ali, A., Javaid A., Shoaib, A. & Khan, I. H. (2020). Effect of soil amendment with Chenopodium album dry biomass and two Trichoderma species on growth of chickpea var. Noor 2009 in Sclerotium rolfsii contaminated soil. Egyptian Journal of Biological Pest Control, 30(1), 1-9. 2. Chamarthi, S., Kumar, A., Vuong, T. D., Blair, M. W., Gaur, P. M., Nguyen, H. T. & Varshney, R. K. (2011). Trait mapping and molecular breeding, in Biology and breeding of food legumes, P. A. and K. J., Eds., CABI International, Oxfordshire, U.K. 3. Dhingra, O. D & Sinclair, J. B. (1994). Basic Plant Pathology Methods. CRS Press, London, 443. 4. Gujaria, N., Kumar, A., Dauthal, P., Dubey, A., Hiremath, P., Bhanu Prakash, A., Farmer, A., Bhide, M., Shah, T., Gaur, P., Upadhyaya, H. D., Bhatia, S., Cook, D. R., May, G. D. & Varshney, R. K. (2011). Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 122, 1577–1589. 5. Gupta, O., Rathi, M. & Mishra, M. (2012). Screening for resistance against Rhizoctonia bataticola causing dry root rot in chickpea. Journal of Food Legumes, 25(2),139-141.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|