Abstract
The expeditious industrialization is helping the world to give a new modern era with all sorts of amenities. But the consequences are following great risks that might result in a terrifying future. Heavy metal pollution and its hazardous effects are one of them. Though India is the 3rd largest chromium producing country and the Sukinda valley of Odisha, is the chief source for chromium, hence here the threat of chromium pollution is at a high point. Countermeasures to this problem have become of prime importance. Among several remedial measures, bioremediation is an approaching process to control the accelerated growth of heavy metal contamination including chromium. In the world of microorganisms, the congenital characteristics of fungi have great importance as they can grow easily in polluted habitats. Again, there is evidence of native fungi having the potential to bind with heavy metals and remove toxic agents from natural environments. The pathway of chromium toxicity and its possible remediation potential by fungi have been studied extensively in the Sukinda area. This study signifies some positive aspects that can be practised in the future as a convenient option for bioremediation. Fungal bioremediation improved with biotechnology tools will be suitable output for rapid remediation which is vital for this moment.
Publisher
Action For Sustainable Efficacious Development and Awareness
Reference95 articles.
1. Agency for Toxic Substances and Disease Registry, USA. 2017. CERCLA Priority List of Hazardous Substances. Available online: https://www.atsdr.cdc.gov/spl/ (accessed on 20 September 2019).
2. Akhtar, N., & Mannan, M. A. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports , 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452.
3. Alvarez, C. C., Bravo Gómez, M. E., & Hernández Zavala, A. (2021). Hexavalent chromium: Regulation and health effects. Journal Of Trace Elements In Medicine And Biology: Organ Of The Society For Minerals And Trace Elements (GMS), 65, 126729.
4. Amatussalam, Abubacker A, Ramaswamy M, Babu. (2011). In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Indian Journal of Experimental Biology, 49, 925-931.
5. Arshi, A., & Singh, A. (2021). Bioremediation of Hexavalent Chromium from Industrial Effluents. In Emerging Treatment Technologies for Waste Management , 29-52..
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献