Affiliation:
1. Moscow Aviation Institute (National Research University) (MAI)
Abstract
<p>The implementation of priority areas for the development of the Economy of the Russian Federation, the digital transformation of production, the improvement and development of new designs used at domestic enterprises in the aviation and rocket and space industries, energy, mechanical engineering and others, is largely associated with the use of polymer composite materials (CM), which provide optimal physical and mechanical characteristics of structures (functional objects). As reinforcing elements of CM, carbon fibers are widely used, because they have high specific strength. At the same time, the mechanical properties of products significantly depend on the direction of the fibers. One of the promising directions for the manufacture of objects from CM, which makes it possible to create structures of complex shape, is 3D printing technology. The use of 3D printing makes it possible to obtain structures with spatial reinforcement along specified trajectories. This is due to the fact that continuous carbon fiber reinforced polymer composite (CFRT) is used for printing. This allows full control over the location of the fibers during the printing process, which allows you to arrange 100% of the fibers in accordance with the required operating conditions of the object. However, practically unexplored are issues related to the optimization of the process of 3D printing of functional objects from CM by the method CFRT 3D printing in terms of controlling the location of fibers during printing, allowing to take into account the criteria for the destruction of the composite. This work is devoted to this goal, which proposes general approaches to setting and solving the problem of optimizing the selection of a 3D-printing scheme.</p>
Publisher
Moscow State University of Psychology and Education
Subject
Polymers and Plastics,General Environmental Science
Reference27 articles.
1. Bosov, A.V., Bityukov, Y.I., Deniskina, G.Y. About Searching for the Optimal 3D Printing Scheme of Structures from Composite Materials / A.V. Bosov, Y.I. Bityukov, G.Y. Deniskina // Informatics and Applications. – 2022. – V.16. – Issue 1. – P. 10–19. – DOI: 10.14357/19922264220102.
2. Vasiljev, V.V. Mechanics of Structures Made of Composite Materials / V.V. Vasiljev. – Moskow: Mashinostroenie, 1988. – 272 p.
3. Deniskina, G.Y. CAD/CAM/CAE-System for Manufacturing Structures from Fibrous Composite Materials Using 3D-printing / G.Y. Deniskina // Trudy MAI. – 2022. – â126. – DOI: 10.34759/trd-2022-126-21.
4. Deniskina, G.Y. Method for Finding Approximate Solutions of Elasticity Equations Using Spline Wavelets / Ð.Ю. ÐениÑкина // G.Y. Deniskina // Trudy MAI. – 2021. – â121. – DOI: 10.34759/trd-2021-121-24.
5. Deniskina, G.Y. Program for Modeling the Process of 3D Printing CompositeCAD (CAD-system) / G.Y. Deniskina // Certificate No. 2022682105 on State Registration of the Computer Program. – 2022.