Affiliation:
1. Moscow Aviation Institute (National Research University)
Abstract
<p>A class of problems of optimal control of nonlinear continuous deterministic systems under conditions of uncertainty is considered. To solve the problem, a numerical algorithm for finding the optimal control is formed, in which the parameterization of the control law is used, which depends on time and a set of coordinates of the state vector available for measurement. This approach is based on the approximation of the control law by a series using a system of basis functions with unknown coefficients. The search for unknown coefficients in the expansion of the control law is implemented using multi-agent optimization methods: a hybrid multi-agent interpolation search algorithm and a multi-agent algorithm based on the use of linear controllers for controlling the movement of agents. A software has been developed and two model examples and an applied problem of stabilizing a satellite with the help of engines installed on it have been solved.</p>
Publisher
Moscow State University of Psychology and Education
Subject
Polymers and Plastics,General Environmental Science
Reference25 articles.
1. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation in conditions of uncertainty]. Moscow: Publ. Nauka, 1977. 392 p.
2. Ovsyannikov D.A., Mizintseva M.A., Balabanov M.Yu., Durkin A.P., Edamenko N.S., Kotina E.D., Ovsyannikov A.D. Optimizatsiya dinamiki puchkov traektorii c ispol'zovaniem gladkikh i negladkikh funktsionalov [Optimization of dynamics of bundles of trajectories using smooth and non-smooth functionals]. Ch.1. Vestn. SPbGU. Ser.10. Prikladnaya matematika. Informatika. Protsessy upravleniya = Part 1. Bulletin of St. Petersburg State University. Series 10. Applied Mathematics. Computer science. Control processes, 2020. Vol.16. no.1. P. 73–84. (In Russ.)
3. Henrion D., Korda M. Convex Computation of the Region of Attraction of Polynomial Control Systems // European Control Conf, (ECC). Zurich, 2013. P. 676–681.
4. Deng H., Zhang W., Shen C. Stability Analysis of Optimal Trajectory for Nonlinear Optimal Control Problems // Journal of Mathematics. 2020. P.1–5. doi:10.1155/2020/1392705.
5. Bortakovskii A.S. Optimal'noe i suboptimal'noe upravleniya puchkami traektorii determinirovannykh sistem avtomatnogo tipa [Optimal and suboptimal control of bundles of trajectories of deterministic systems of automatic type]. Izv. RAN TiSU = Proceedings of the RAS TiSU. 2016. No. 1. P. 5–26.