Ordered Partial Correlation Networks in Psychological Research

Author:

Artemenkov S.L.1ORCID

Affiliation:

1. Moscow State University of Psychology and Education

Abstract

Network modeling, which has emerged in recent years, can be successfully applied to the consideration of relationships between measurable psychological variables. In this context, psychological variables are understood as directly affecting each other, and not as a consequence of a latent construct. The article describes regularization methods that can be used to effectively assess the sparse and interpretable network structure based on partial correlations of psychological indicators. An overview of the glasso regularization procedure using EBIC model selection for evaluating an ordered sparse network of partial correlations is presented. The issues of performing this analysis in R in the presence of normal and non-normal data distribution are considered, taking into account the influence of the hyperparameter, which is manually set by the researcher. The considered approach is also interesting as a way to visualize possible causal connections between variables. This review bridges the gap related to the lack of an accessible description in Russian of this approach, which is still uncommon in Russia and at the same time promising.

Publisher

Federal State-Financed Educational Institution of Higher Education Moscow State University of Psychology and Education

Subject

General Medicine

Reference51 articles.

1. Aleskerov F.T., Khabina E.L., Shvarts D.A. Binarnyye otnosheniya, grafy i kollektivnyye resh- eniya. M.: FIZMATLIT, 2017. 344 s.

2. Artemenkov S.L. Setevoye modelirovaniye psikhologicheskikh konstruktov // Modelirovaniye i analiz dannykh. 2017. № 1. S. 9–28.

3. Artemenkov S.L. Initsionno-semanticheskaya model’ divergentnoy kreativnosti [Elektronnyy resurs] // Psikhologicheskaya nauka i obrazovaniye psyedu.ru. 2012. № 3. S. 1–15. URL: http:// psyjournals.ru/psyedu_ru/2012/n3/55540.shtml.

4. Zhukova E.S., Artemenkov S.L., Bogoyavlenskaya D.B. K voprosu o sootnoshenii odarennosti i osoznannoy samoregulyatsii. Lichnostnyye i regulyatornyye resursy dostizheniya obrazova- tel’nykh i professional’nykh tseley v epokhu tsifrovizatsii. Moskva: Znaniye-M, 2020. S. 104– 115. DOI: 10.38006/907345–50–8.2020.104.115.

5. Zhukova E.S., Artemenkov S.L., Bogoyavlenskaya D.B. Issledovaniye intellektual’noy aktivnos- ti v mladshem shkol’nom i podrostkovom vozraste / Modelirovaniye i analiz dannykh. 2019. № 1. S. 11–29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3