Integrated method for planning waste management based on the material flow analysis and life cycle assessment

Author:

Bendiuh Vladyslav1ORCID,Markina Liudmyla2ORCID,Matsai Nataliia3ORCID,Kyrpychova Iryna3ORCID,Boichenko Sergii1ORCID,Priadko Serhii1ORCID,Shkilniuk Iryna1ORCID,Komarysta Bohdana1ORCID,Yermakovych Iryna4ORCID,Vlasenko Oleh2ORCID

Affiliation:

1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine

2. State Ecological Academy of Postgraduate Education and Management, Ukraine

3. Luhansk Taras Shevchenko National University, Ukraine

4. Volodymyr Dahl East Ukrainian National University, Ukraine

Abstract

This paper gives a solution to the problem of improving a solid waste management system through the integration of two systemic methodologies: material flow analysis and life cycle assessment. The proposed method serves to assess the effectiveness of the implementation of various waste management measures. The study was carried out with the detailing of the anaerobic digestion process since it is this recycling technology that plays a key role in reducing the amount of waste along with the production of renewable energy and in reducing the adverse effects on the external environment. Simulation of changes in waste properties in a certain processing sequence was carried out in order to obtain reliable information for further optimization of the system. The proposed modeling of waste treatment processes based on their constituent equations made it possible to adequately reflect the impact of changes in working conditions on all subsequent output flows. The analysis of material flows for an enterprise of mechanical and biological treatment of waste is presented and the use of the model in the context of the process of anaerobic digestion of household waste is illustrated. It was found that anaerobic digestion potentially makes it possible to obtain 4.1 Gj of biogas energy from 1 HSW, which corresponds to 460 kWh of electricity and 2060 MJ of heat. The developed method is based on a combination of analysis of material flows and life cycle assessment. The method acts as a tool for comparing alternative technologies and waste management scenarios. In the future, it can serve to support waste management decisions at both the strategic and operational levels

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3