A model of decoy system based on dynamic attributes for cybercrime investigation

Author:

Vasylyshyn Sviatoslav1ORCID,Susukailo Vitalii1ORCID,Opirskyy Ivan1ORCID,Kurii Yevhenii1ORCID,Tyshyk Ivan1ORCID

Affiliation:

1. Lviv Polytechnic National University, Ukraine

Abstract

The object of research are decoys with dynamic attributes. This paper discusses the impact of decoys involving blockchain technologies on the state of information security of the organization and the process of researching cybercrime. This is important because most cybercrimes are detected after the attacker gains access to sensitive data. Through systematic analysis of the literature focused on assessing the capabilities of decoy and blockchain technologies, this work identifies the main advantages of decoys that utilize blockchain technology. To assess the effectiveness of attacker detection and cybercrime analysis, controlled experiments were conducted using a blockchain-based decoy system that we developed aimed at determining network performance. As part of the study reported here, a technique is proposed to detect cybercrime using decoys based on blockchain technology. This technique is based on the fact that the attributes of the system change dynamically. Such a technique has made it possible to obtain a system model that solves the task of detecting decoys by intruders. In addition, the developed scheme reduces the load in contrast to the conventional fixed solution. The results indicate that the response time of services is significantly reduced in the environment of decoys with dynamic attributes. For example, Nginx's response time in a static host is twice as high as dynamic, and an Apache dynamic server can still respond to an intruder's attack even if a static server fails. Therefore, the results reported in the article give grounds to assert the possibility of using the solution in the infrastructure of information systems at the public and private levels

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAWAL: A novel unified analytics framework for enterprise web applications and multi-server environments;Information Processing & Management;2024-05

2. A Method to Detect Suspicious Individuals Through Mobile Device Data;2023 IEEE 5th International Conference on Advanced Information and Communication Technologies (AICT);2023-11-21

3. Real-Time Ransomware Detection by Using eBPF and Natural Language Processing and Machine Learning;2023 IEEE 5th International Conference on Advanced Information and Communication Technologies (AICT);2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3