Topology optimization for isotropic elastic materials using honeycomb tessell

Author:

Tran Ngoc-Tien1ORCID

Affiliation:

1. Hanoi University of Industry, Viet Nam

Abstract

Topology optimization is gaining popularity as a primary tool for engineers in the initial stages of design. Essentially, the design domain is broken down into individual pixels, with the material density of each element or mesh point serving as a design variable. The optimization problem is then tackled through mathematical programming and optimization methods that rely on analytical gradient calculation. In this study, topology optimization using honeycomb tessellation elements is explored. Hexagonal elements have the ability to flexibly connect two adjacent elements. The use of the hexagonal element limits the occurrence of the checkerboard pattern to the finite elements of the quadrilateral standard Lagrangian type. A mathematical model is developed with the objective function being the minimum compliance value of the design domain. The element stiffness matrix is constructed using the strain-displacement matrix and the constitutive matrix, assuming a unit Young's modulus. Additionally, optimal conditions are established using Lagrangian multipliers. Two sensitivity and density filtering filters are employed to increase optimization efficiency, prevent the algorithm from reaching a local optimal state, and speed up convergence. If the suggested filter is employed, the objective function achieves a value of c=173,0293 and convergence is attained after 200 iterations. In contrast, without using the filter, the objective function has a larger value (c=186,7922) and convergence occurs at the 27th iteration. The results are significant for optimizing topology to meet specific boundary condition requirements. This paper proposes a novel approach using a combination of filters to advance topology optimization using hexagonal elements in future applications.

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3