Harris Hawks optimization for ambulance vehicle routing in smart cities

Author:

Hussein Taha Darwassh Hanawy1ORCID,Frikha Mondher2ORCID,Rahebi Javad3ORCID

Affiliation:

1. National Engineering School of Sfax (ENIS), Tunisia

2. National School of Electronics and Telecoms of Sfax, Tunisia

3. Istanbul Topkapi University, Indonesia

Abstract

The ambulance routing problem is one of the capacitated ambulance routing problem forms. It deals with injuries and their requests for saving. Therefore, the main aim of the ambulance routing problem is to determine the minimum (i.e., optimum) required distances of between: 1) accident places and the ambulance station; 2) the location of the nearest hospital and the accident places. Although of the efforts proposed in the literature, determining the optimum route is crucial. Therefore, this article seeks to tackle ambulance vehicle routing in smart cities using Harris Hawks Optimization (HHO) algorithm. It attempts to take the victims as quickly as possible and confidently. Several engineering optimization problems confirm that HHO outperforms many well-known Swarm intelligence approaches. In our system, let’s use the node approach to produce a city map. Initially, the control station receives accident site information and sends it to the hospital and the ambulance. The HHO vehicle routing algorithm receives data from the driver; the data includes the location of the accident and the node position of the ambulance vehicle. Then, the driver’s shortest route to the accident scene by the HHO. The locations of the accident and hospital are updated by the driver once the car reaches the accident site. The fastest route (which results in the least travel time) to the hospital is then determined. The HHO can provide offline information for a potential combination of the coordinates of destination and source. Extensive simulation experiments demonstrated that the HHO can provide optimal solutions. Furthermore, performance evaluation experiments demonstrated the superiority of the HHO algorithm over its counterparts (SAODV, TVR, and TBM methods). Furthermore, for ten malicious nodes, the PDF of the algorithm was 0.91, which is higher than the counterparts

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LifeSaver: A VaDE-Based Intelligent Ambulance Positioning System for Optimal Emergency Response and Alert System;International Journal of Advanced Research in Science, Communication and Technology;2024-07-10

2. Intelligent Transport System (ITS) for Healthcare: Smart Ambulance;2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3