Modeling the wetting of titanium dioxide and steel substrate in water-borne paint and varnish materials in the presence of surfactants

Author:

Dyuryagina AntoninaORCID,Lutsenko AidaORCID,Demyanenko AlexandrORCID,Tyukanko VitaliyORCID,Ostrovnoy KirillORCID,Yanevich AlyonaORCID

Abstract

This paper reports the results of studying the effect of two additives such as polyether siloxane (PS) and sodium polyacrylate (SPA) on the wetting of various substrates in water-borne paints (WB paints). Titanium dioxide (TiO2), paraffin (PA), steel (ST), and glass (GL) were used as solid substrates. The edge wetting angle (θ0) and the ratio (dCosθ/dСS) were used as the criterion for assessing the wettability of solid substrates. In aqueous solutions (without acrylic resin), both surfactants improve the wetting of the substrates. For PS, all the substrates studied, depending on θ depression, can be arranged in a row: ST>PA>GL>TiO2. For SPA: PA>TiO2>GL>ST. The introduction of an acrylic film-forming agent in the composition enhances the wetting ability of SPA (in comparison with the aqueous solution of surfactants). With an increase in the concentration of SPA from 0 to 4 g/dm3 in acrylic resin solutions, the edge wetting angle of steel decreases by 6÷8° (while in water by only 3°). With respect to TiO2, the wetting activity of SPA does not depend on the acrylic content of the water. PS in acrylic-containing compositions exhibits worse wetting activity than SPA. The introduction of surfactants in the compositions improves the quality of coatings. With optimal SPA contents in the compositions, the corrosion rate of coatings is reduced (in distilled water by 45 %, in 60 % NaCl solution by 60 %). At the same time, the gloss of coatings increases by 50 % while adhesion increases by 2 points (according to ISO 11845: 2020). This is fully correlated with the nature of the effect of surfactants on the wetting of the steel substrate and pigment (titanium dioxide). Based on probabilistic-deterministic planning, the compositions of WB paints were optimized, ensuring their maximum wetting of TiO2 and ST. Equations for calculating cosθ depending on the content of acrylic polymer and surfactants have been derived

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3