Determining the influence of geometric parameters of the traction-transportation vehicle's frame on its tractive capacity and energy indicators

Author:

Antoshchenkov RomanORCID,Halych IvanORCID,Nykyforov АntonORCID,Cherevatenko HalynaORCID,Chyzhykov IvanORCID,Sushko SerhiiORCID,Ponomarenko NataliiaORCID,Diundik SergeyORCID,Tsebriuk IvanORCID

Abstract

This paper reports results of studying the influence of geometrical parameters of the frame in a traction-transportation vehicle on its traction and energy indicators. A method for estimating the influence of geometrical parameters of the frame in a traction-transportation vehicle on its traction and energy indicators has been substantiated, based on the traction calculation of the tractor and taking into consideration the change in the distance from the hinge of the traction-transportation vehicle to the front and rear drive axles. The method makes it possible to determine the normal reactions, tangent thrust forces, and traction power on the wheels of the machine. The method reported here enables defining the optimal geometric parameters for improving the traction-adhesion and fuel-economic indicators of the traction-transportation vehicle. It was theoretically established that the normal reactions on the front wheels of the studied traction-transportation vehicle are 27,800 N and exceed by 1.95 times the normal reactions on the rear wheels of 14,200 N. This is due to the fact that the distance from the hinge to the corresponding axles of the wheels is 1.89 m and 0.97 m. Increasing the distance from the hinge to the axle of the rear wheels to 1.17 m produces a positive effect on improving the tractive performance of the traction-transportation vehicle. There is an increase in the tractive power on rear wheels to 24.39 kW. The experimental study of the traction-transportation vehicle was performed using an all-wheel-drive machine with a hinge-connected frame as an example. The maximum traction power is 121 kW, which is achieved at a speed of 12 km/h, traction efficiency of 0.68, and a thrust force per hook of 30.2 kN. The difference between the results obtained theoretically and experimentally is 8 %. Applying the method could make it possible to provide designers and manufacturers with recommendations for the construction and improvement of a traction-transportation vehicle, to improve traction and adhesion properties, and reduce the anthropogenic impact on the soil

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3