The applicability of informative textural features for the detection of factors negatively influencing the growth of wheat on aerial images

Author:

Yessenova Moldir1ORCID,Abdikerimova Gulzira1ORCID,Baitemirova Nurgul2ORCID,Mukhamedrakhimova Galia1ORCID,Mukhamedrakhimov Karipola3ORCID,Sattybaeva Zeinigul4ORCID,Salgozha Indira5ORCID,Yerzhanova Akbota3ORCID

Affiliation:

1. L. N. Gumilyov Eurasian National University, Kazakhstan

2. Kh. Dosmukhamedov Atyrau University, Kazakhstan

3. S. Seifullin Kazakh Agro Technical University, Kazakhstan

4. Sh. Ualikhanov Kokshetau State University , Kazakhstan

5. Abai Kazakh National Pedagogical University, Kazakhstan

Abstract

Automated processing of aerospace information makes it possible to effectively solve scientific and applied problems in cartography, ecology, oceanology, exploration and development of minerals, agriculture and forestry, and many other areas. At the same time, the main way to extract information is to decipher images, which are the main carrier of information about the area. Aerospace images are a combination of natural texture regions and man-made objects. This article discusses methods for analyzing texture images. The main tasks of the analysis of texture areas include the selection and formation of features that describe texture differences, the selection and segmentation of texture areas, the classification of texture areas, and the identification of an object by texture. Depending on the features of the texture areas of the images used, segmentation methods based on area analysis can be divided into statistical, structural, fractal, spectral, and combined methods. The article discusses textural features for the analysis of texture images, and defines informative textural features to identify negative factors for crop growth. To solve the tasks, textural features are used. Much attention is paid to the development of software tools that allow to highlight the features that describe the differences in textures for the segmentation of texture areas. This approach is universal and has great potential on the studied aerospace image to identify objects and boundaries of regions with different properties using clustering based on images of the same surface area taken in different vegetation periods. That is, the question of the applicability of sets of texture features and other parameters for the analysis of experimental data is being investigated.

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3