Application of topsis, mairca and EAMR methods for multi-criteria decision making in cubic boron nitride grinding

Author:

Huy Trieu Quy1ORCID,Hien Bui Thanh2ORCID,Danh Tran Huu3ORCID,Lam Pham Duc4ORCID,Linh Nguyen Hong5ORCID,Khoa Vu Van6ORCID,Hung Le Xuan2ORCID,Pi Vu Ngoc2ORCID

Affiliation:

1. University of Economics-Technology for Industries, Viet Nam

2. Thai Nguyen University of Technology, Viet Nam

3. Vinh Long University of Technology Education, Viet Nam

4. Nguyen Tat Thanh University, Viet Nam

5. Electric Power University, Viet Nam

6. National Research Institute of Mechanical Engineering, Viet Nam

Abstract

Determining the best cutting mode is a common problem for machining processes as well as for CBN (Cubic Boron Nitride) grinding on Computer Numerical Control (CNC) machines. It is even more important when it is necessary to choose a solution that meets many goals, which are in conflict. This paper presents the results of a multi-criteria decision-making (MCDM) study on CBN grinding of cylindrical-shaped parts on CNC milling machines. Three MCDM methods,  including TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), MAIRCA (Multi-Attributive Ideal-Real Comparative Analysis), and EAMR (Evaluation by an Area-based Method of Ranking) were applied in this work. Besides, MEREC (Method based on the Removal Effects of Criteria) and Entropy methods were used to determine the weights of the criteria. In addition, the Taguchi method with L18 orthogonal array (6^1+3^3) design was used for the design of an experiment, which has four input factors including the depth of dressing cut, the spindle speed, the feed rate, and the wheel diameter. Two criteria, including the surface roughness (SR) and the material removal speed (MRS) were selected as the response outputs. The reason for choosing these two criteria is because SR and MRS are two very important output factors of a mechanical machining process as well as of the CBN grinding process on a CNC milling machine. In particular, these two criteria are always in conflict with each other. Small SR requirements will require small values of the feed speed and the depth of cut. This will lead to the reduction of MRS. From the results of this study, the use of different methods for MCDM was evaluated. In addition, rankings of alternatives have been given according to MCDM methods. Furthermore, the best alternative to guarantee both the minimum SR and the maximum MRS has been found

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3