Software prototype development for non-centralized objects of wind flow amplification

Author:

Alina Gaukhar1ORCID,Tashatov Nurlan2ORCID,Tatkeyeva Galina3ORCID,Bauyrzhanuly Madi3ORCID,Kaibassova Dinara1ORCID,Nurtay Margulan1ORCID

Affiliation:

1. Abylkas Saginov Karaganda Technical University, Kazakhstan

2. L. N. Gumilyov Eurasian National University, Kazakhstan

3. S. Seifullin Kazakh Agro Technical University, Kazakhstan

Abstract

This research is devoted to the development of software to increase the efficiency of autonomous wind-generating substations using panel structures, which will allow the use of wind energy to generate electricity with minimal losses and for the life support of buildings and structures. In the course of the work, a software and hardware system with a functional diagram for experimental measurements was developed. The paper also describes the process of modeling wind generation, collecting and transmitting real-time data to a web server via the HTTPS protocol. Due to the intensive development of wind energy in Kazakhstan, there is a need to apply methods to improve the energy generation process. In particular, the use of hardware and software to monitor and make decisions on optimizing the power generation process will help solve the problem of limited economic and labor resources. The results of the experiments revealed that the automatic control of the shield structures allows specialists to increase the effectiveness of the energy generation process by 25 % and, thus, a non-linear relationship between the power of the generated energy, the speed and direction of wind has been revealed. It should also be noted that the results obtained in the course of this research make it possible to solve the problem of saving electricity in the cities of Kazakhstan, since so far there are only large-scale wind farms, which is not always available in simple urban conditions. Moreover, the software developed during the study will allow autonomous control and analysis of the behavior of the wind farm, taking into account various weather conditions. In the future, the methods of data analysis will be applied to the data obtained via the process of modeling. A script for receiving and transmitting real-time data with wind speed and direction sensors has been developed

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3