Algorithm construction and numerical solution based on the gradient method of one inverse problem for the acoustics equation

Author:

Kasenov SyrymORCID,Askerbekova JanarORCID,Tleulesova AigerimORCID

Abstract

The paper considers the problem of continuation of solutions of hyperbolic equations from a part of the domain boundary. These problems include the Cauchy problem for a hyperbolic equation with data on a timelike surface. In the inverse problems, the inhomogeneities are located at some depth under the medium layer, the parameters of which are known. In this case, an important tool for practitioners are the problems of continuation of geophysical fields from the Earth's surface towards the lay of inhomogeneities. In equations of mathematical physics, solution of the continuation problem from part of the boundary is in many cases strongly ill-posed problems in classes of functions of finite smoothness. The ill-posedness of this problem is considered, that is, the example of Hadamard, a Cauchy problem for a hyperbolic equation, is given. The physical formulation of the continuation problem is considered and reduced to the inverse problem. The definition of the generalized solution is formulated and the correctness of the direct problem is presented in the form of a theorem. The inverse problem is reduced to the problem of minimizing the objective functional. The objective functional is minimized by the Landweber method. By the increment of the functional, we consider the perturbed problem for the direct problem. We multiply the equation of the perturbed problem by some function and integrate by parts, we obtain the formulation of the conjugate problem. After that, we get the gradient of the functional. The algorithm for solving the inverse problem is listed. A finite-difference algorithm for the numerical solution of the problem is presented. The numerical solution of the direct problem is performed by the method of inversion of difference schemes. The results of numerical calculations are presented

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical solution of the continuation problem for the one-dimensional acoustics equation;SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3