The effect of lamina configuration and compaction pressure on mechanical properties of laminated gigantochloa apus composites

Author:

Manik ParlindunganORCID,Suprihanto AgusORCID,Nugroho SriORCID,Sulardjaka SulardjakaORCID

Abstract

This study aims to investigate the mechanical properties of bamboo apus (gigantochloa apus) as a natural reinforced composite material. Bamboo’s laminates of gigantochloa apus were used as reinforcement on the epoxy resin matrix. The parameters examined in this study are the configuration of lamina and compaction pressure. Laminate configuration varies in the number, thickness and direction of the lamina. Compaction pressures of 1.5 MPa, 2 MPa, and 2.5 MPa were used to fabricate the Laminated Bamboo Composites (LBCs). The stem of bamboo with a length of 400 mm was split to obtain bamboo lamina with a size of 400×20 mm. The thickness of bamboo lamina is varied between 1 mm, 1.5 mm, and 2 mm. The bamboo lamina is then preserved by watering it with a preservative solution in the form of 2.5 % sodium tetraborate solution and dried in an oven until the water content reaches 10 %. LBCs were made with a hand lay-up method. After the LBCs were molded, they were pressed with 3 variations of dies compaction 1.5 MPa, 2 MPa and 2.5 MPa. The tensile and bending tests were carried out on the LBCs. Tensile testing is performed in accordance with ASTM standard D3039 and the bending tests were conducted based on ASTM standard D7264. The results show that at each compaction pressure, the highest tensile and bending strength was achieved by LBCs with a thickness of 1 mm of bamboo lamina and 7 layers of bamboo laminates. The LBC with thinner bamboo lamina reinforcement and more layers has the highest tensile strength and bending strength, even it has a lower mass fraction. The LBCs with laminates oriented 0° exhibited greater tensile and bending strengths than the LBCs with laminates structured –45°/+45° and 0°/90°. The LBCs with the 0° laminates direction is matrix fracture followed by lamina fracture. In the 0°/90° direction, matrix fracture is followed by delamination in the 90° and 0° laminates direction. Delamination and lamina clefting were observed in LBCs with laminates oriented +45°/–45°.

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3