Improving the technology for manufacturing hollow cylindrical parts for vehicles by refining technological estimation dependences

Author:

Puzyr RuslanORCID,Shchetynin ViktorORCID,Vorobyov ViktorORCID,Salenko AlexandrORCID,Arhat RomanORCID,Haikova TetianaORCID,Yakhin SerhiiORCID,Muravlov VolodymyrORCID,Skoriak YuliiaORCID,Negrebetskyi IgorORCID

Abstract

This paper shows that the technological preparation of production accounts for 20‒70 % of the total labor intensity of technical preparation. An important role belongs to the applied programs of finite-element modeling. However, such software packages often cannot be purchased by small-scale industrial enterprises for various reasons. Therefore, special empirical and analytical calculation models are used, which have proved to be quite effective in typical metal processing processes. Drawing a cylindrical hollow part was used as an example of the improved analytical dependence to calculate meridional tensile stresses. Existing analytical models of the process accounted for the bending moment through additional stresses. However, this approach only roughly described the deformation process. It was possible to refine the existing analytical dependences by introducing a term into the differential equilibrium equations that takes into consideration the bending moment that acts in the meridional direction when a workpiece passes the rounding on the matrix edge. Analysis of the obtained expression revealed that the bending of a workpiece gives rise to the stretching meridional stresses, which depend on the ratio of the squares of the thickness of the workpiece and the radius of the matrix rounding. The results of the estimation data from the numerical and theoretical models coincided for small values of the radius of the matrix rounding of 1‒2 mm, which confirms the adequacy of the analytical solution. In the numerical model, there is an extreme point where the tensile stresses have a minimum and, after it, begin to increase; this corresponds to the matrix rounding radius of 5 mm

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic Characteristics of Deformed Porous Structures;Journal of Engineering Sciences;2024

2. Optimization Study of the Process of Manufacturing The Components of the Thermal System of an Electric Car;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

3. Energy Analysis of the Structures of the Controlled Drive of the Fuel Pump of a Vehicle Diesel Engine for Driving in Urban Conditions;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

4. Features of the Car Wheel Rims Manufacturing Technology for Electric Cars;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

5. Electrotensiometry While Studying Plastic Deformation of Welded Cylindrical Samples;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3