Improvement of the model of object recognition in aero photographs using deep convolutional neural networks

Author:

Slyusar VadymORCID,Protsenko MykhailoORCID,Chernukha AntonORCID,Kovalov PavloORCID,Borodych PavloORCID,Shevchenko SerhiiORCID,Chernikov OleksandrORCID,Vazhynskyi SerhiiORCID,Bogatov OlegORCID,Khrustalev KirillORCID

Abstract

Detection and recognition of objects in images is the main problem to be solved by computer vision systems. As part of solving this problem, the model of object recognition in aerial photographs taken from unmanned aerial vehicles has been improved. A study of object recognition in aerial photographs using deep convolutional neural networks has been carried out. Analysis of possible implementations showed that the AlexNet 2012 model (Canada) trained on the ImageNet image set (China) is most suitable for this problem solution. This model was used as a basic one. The object recognition error for this model with the use of the ImageNet test set of images amounted to 15 %. To solve the problem of improving the effectiveness of object recognition in aerial photographs for 10 classes of images, the final fully connected layer was modified by rejection from 1,000 to 10 neurons and additional two-stage training of the resulting model. Additional training was carried out with a set of images prepared from aerial photographs at stage 1 and with a set of VisDrone 2021 (China) images at stage 2. Optimal training parameters were selected: speed (step) (0.0001), number of epochs (100). As a result, a new model under the proposed name of AlexVisDrone was obtained. The effectiveness of the proposed model was checked with a test set of 100 images for each class (the total number of classes was 10). Accuracy and sensitivity were chosen as the main indicators of the model effectiveness. As a result, an increase in recognition accuracy from 7 % (for images from aerial photographs) to 9 % (for the VisDrone 2021 set) was obtained which has indicated that the choice of neural network architecture and training parameters was correct. The use of the proposed model makes it possible to automate the process of object recognition in aerial photographs. In the future, it is advisable to use this model at ground stations of unmanned aerial vehicle complex control when processing aerial photographs taken from unmanned aerial vehicles, in robotic systems, in video surveillance complexes and when designing unmanned vehicle systems

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3