Abstract
Solving optimization problems is an ever-growing subject with an enormous number of algorithms. Examples of such algorithms are Scatter Search (SS) and genetic algorithms. Modifying and improving of algorithms can be done by adding diversity and guidance to them. Chaotic maps are quite sensitive to the initial point, which means even a very slight change in the value of the initial point would result in a dramatic change of the sequence produced by the chaotic map Arnold's Cat Map. Arnold's Cat Map is a chaotic map technique that provides long non-repetitive random-like sequences.
Chaotic maps play an important role in improving evolutionary optimization algorithms and meta-heuristics by avoiding local optima and speeding up the convergence. This paper proposes an implementation of the scatter search algorithm with travelling salesman as a case study, then implements and compares the developed hyper Scatter Arnold's Cat Map Search (SACMS) method against the traditional Scatter Search Algorithm. SACMS is a hyper Scatter Search Algorithm with Arnold's Cat Map Chaotic Algorithm. Scatter Arnold's Cat Map Search shows promising results by decreasing the number of iterations required by the Scatter Search Algorithm to get an optimal solution(s). Travelling Salesman Problem, which is a popular and well-known optimization example, is implemented in this paper to demonstrate the results of the modified algorithm Scatter Arnold's Cat Map Search (SACMS). Implementation of both algorithms is done with the same parameters: population size, number of cities, maximum number of iterations, reference set size, etc. The results show improvement by the modified algorithm in terms of the number of iterations required by SS with an iteration reduction of 10–46 % and improvements in time to obtain solutions with 65 % time reduction
Publisher
Private Company Technology Center
Subject
Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献