Investigation on synthesis, structural and nonlinear optical responses of cadmium selenide coated with gold nanoparticles induced by femtosecond laser excitation

Author:

Jassim Nadia MohammedORCID,Kareem Nada A.ORCID,Ibrahim Nada IsmaelORCID

Abstract

Nonlinear optical signal enhancement cannot be achieved by using semiconductor materials alone. Here, we show that the recently discovered nonlinear optical behavior of plasmonic nanoparticles and hybrid nanowires enables an enhanced nonlinear optical response. A synthesis, characterization, and nonlinear optical response of synthesized hybrid nanowires structures were studied. The growth of gold nanoparticles (Au NPs) onto cadmium selenide nanowires CdSe NWs with different concentrations of gold nanoparticles coating prepared via an impregnation technique. Au nanoparticles in the CdSe/Au nanowires were uniformly dispersed on the CdSe nanowire surface. The surface morphologies and the propagation manner of hybrid nanostructures were used for transmission electron microscopy (TEM) to study the optical properties of pure and hybrid nanostructures. Dark-field scattering microscopy was used to characterize single CdSe NW and confirm the coating of hybrid CdSe/Au nanowires and characterize the concentration effect of gold nanoparticles. The dark-field scattering spectrum (DFSS) reference to the surface plasmon resonance of nearer Au NPs was observed at ca. 800 nm. By making a comparison between a single cadmium selenide with and without gold nanoparticles coating, hybrid CdSe/Au nanowires exhibit sufficient quality to produce second-harmonic generation stimulated with a pulsed, linearly polarized pump-light from a femtosecond Ti-sapphire laser. The estimated improvement of the second-harmonic generation signal is about ~ 1.8 times, ~ 5.5 times, ~ 6.9 times for low, moderate and full coating of gold nanoparticles, which was mainly due to the high quality of synthesis techniques and good dispersion of gold nanoparticles on CdSe nanowires

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3