Abstract
The scores of speech intelligibility, obtained using objective and subjective methods for three university lecture rooms of the small, medium, and large sizes with different degrees of filling, were presented. The problem of achieving high speech intelligibility is relevant for both students and university administration, and for architects designing or reconstructing lecture rooms. Speech intelligibility was assessed using binaural room impulse responses which applied an artificial head and non-professional quality audio equipment for measuring. The Speech Transmission Index was an objective measure of speech intelligibility, while the subjective evaluation of speech intelligibility was carried out using the articulation method.
Comparative analysis of the effectiveness of parameters of impulse response as a measure of speech intelligibility showed that Early Decay Time exceeded the score of the T30 reverberation time but was ineffective in a small lecture room. The C50 clarity index for all the considered lecture rooms was the most informative. Several patterns determined by the influence of early sound reflections on speech intelligibility were detected. Specifically, it was shown that an increase in the ratio of the energy of early reflections to the energy of direct sound leads to a decrease in speech intelligibility. The exceptions are small, up to 30‒40 cm, distances from the back wall of the room, where speech intelligibility is usually slightly higher than in the middle of the room. At a distance of 0.7–1.7 m from the side walls of the room, speech intelligibility is usually worse for the ear, which is closer to the wall. The usefulness of the obtained results lies in refining the quantitative characteristics of the influence of early reflections of sound on speech intelligibility at different points of lecture rooms.
Publisher
Private Company Technology Center
Subject
Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献