Determining the influence of structural and operational parameters of a double bearing on the thickness of its disc
-
Published:2021-07-01
Issue:7 (111)
Volume:3
Page:68-73
-
ISSN:1729-4061
-
Container-title:Eastern-European Journal of Enterprise Technologies
-
language:
-
Short-container-title:EEJET
Abstract
This paper describes the main advantages of hydrostatic dynamic bearings of the double type, which have several lubricant films. It is indicated that they have an increased carrying capacity, by 1.8 times, and an extended range of stable operation, by 1.5 times, compared to conventional sleeve bearings with one lubricating film. The importance of determining the thickness of the bearing disk has been demonstrated, as it affects its durability. The goal was to investigate the impact of changes in the operational and structural parameters of a double bearing on the thickness of its disk. A sequence for determining the disk thickness has been proposed, including a joint solution to Reynolds equations, the balance of work fluid flow rate, as well as determining the loads acting on a bearing disk, which makes it possible to rationally assign the thickness of the bearing disk. The most common and effective methods of successive approximations have been used in the numerical implementation of Reynolds equations and flow rate balances. The action of centrifugal forces caused by the rotation of the disk has been taken into consideration in determining the total load acting on the bearing disk. The bending strength of the bearing disk was considered under its exposure to the total load. It was noted that due to the high flow rate of the working liquid pumped through the bearing, and the small change in the temperature of the liquid inside the bearing, the temperature deformations of the disk were not taken into consideration. The magnitude of change in the thickness of the double bearing disk has been determined, caused by the action of centrifugal forces in the examined range of angular speeds of the disk's rotation with the shaft.
The reported results could be especially useful in the design of rotor supports for nuclear power plants where bearings have large dimensions, as well as for other units in power plants.
Publisher
Private Company Technology Center
Subject
Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献