Revealing specific features of structure formation in composites based on nanopowders of synthesized zirconium dioxide

Author:

Gevorkyan EdwinORCID,Nerubatskyi VolodymyrORCID,Chyshkala VolodymyrORCID,Morozova OksanaORCID

Abstract

Peculiarities of formation of microstructure in composites based on chemically synthesized zirconium nanopowders obtained by the method of decomposition from fluoride salts were considered. Hydrofluoric acid, concentrated nitric acid, aqueous ammonia solution, metallic zirconium, and polyvinyl alcohol were used. It was established that the reduction of porosity in nanopowders in the sintering process is the main problem in the formation of high-density materials. Analysis of various initial nanopowders, their morphology, and features of sintering by the method of hot pressing with direct transmission of electric current was made. Peculiarities of obtaining the composites based on them with the addition of Al2O3 nanopowders applying the electric sintering method were considered. It was shown that the increase in the content of alumina nano additives leads to an increase in strength and crack resistance of the samples due to simultaneous inhibition of abnormal grain growth and formation of a finer structure with a high content of tetragonal phase. The influence of sintering modes on the formation of the microstructure of zirconium nanopowders has been studied for different contents of alumina additives. Electric current promotes the surface activity of nanopowders and its variable value promotes partial fragmentation of agglomerated grains thus affecting the composite structure. Physical-mechanical properties of the obtained samples, optimal compositions of mixtures, and possibilities of improving some parameters were determined. It was found that nanopowders of zirconium dioxide obtained by the method of decomposition from fluoride salts are quite suitable for the production of composite materials with high physical and mechanical properties. They can compete with imported analogs and enable obtaining of crack resistance of 7.8 MPa·m1/2 and strength of 820 MPa.

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3