Abstract
Motives: Using Points-of-Interest (POIs) data and GIS software, the spatial heterogeneity of different types of accommodation could cheap, easily and quick be analyzed.
Aim: The use of kernel density estimation (KDE) of Points-of-Interest data to shown spatial distribution of different types of accommodation in Poland.
Results: There is a close relationship between the type of accommodation and the type of tourist attraction.
Publisher
Uniwersytet Warminsko-Mazurski
Subject
Nature and Landscape Conservation,Urban Studies,Transportation,Geography, Planning and Development
Reference46 articles.
1. Anderson, T.K. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention, 41(3), pp. 359–364. doi:10.1016/j.aap.2008.12.014.
2. ArcGis (2021). How Kernel Density works – ArcGIS Pro. Documentation. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm, (date: 24.04.2021).
3. Arimond, G., Elfessi, A. (2001). A Clustering Method for Categorical Data in Tourism Market Segmentation Research. Journal of Travel Research, 39(4), pp. 391–397. doi:10.1177/004728750103900405.
4. Assaf, A.G. (2012). Benchmarking the Asia Pacific tourism industry: A Bayesian combination of DEA and stochastic frontier. Tourism Management, 33(5), pp. 1122–1127. doi:10.1016/j.tourman.2011.11.021
5. Assaf, A.G., Tsionas, M., Oh, H. (2018). The time has come: Toward Bayesian SEM estimation in tourism research. Tourism Management, 64, pp. 98–109. doi:10.1016/j.tourman.2017.07.018.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献