Genome-Wide Identification of β-1,3-Glucanase Genes in Hevea brasiliensis

Author:

Lui Xin Jie,P. Thottathil Gincy,Kumar Sudesh

Abstract

β-1,3-glucanase is one of the pathogenesis-related proteins well-known for their antifungal properties which can be abundantly found in Hevea brasiliensis. Utilization of β-1,3-glucanase in the genetic improvement of H. brasiliensis is very important as the high susceptibility to various fungal infections has challenged the current natural rubber industry. A few nucleotide sequences for β-1,3-glucanase have been reported and their role in biotic stress management has been demonstrated. Being a multigene family, it is necessary to identify and characterize more isoforms of β-1,3-glucanase to select the most suitable isoform to be utilized in genetic improvement. In the current study, we conducted a genome-wide identification of β-1,3-glucanases in H. brasiliensis, their classification based on the functional domains and phylogenetic analysis, using different bioinformatics tools. All publicly available nucleotide sequences were collected and curated by eliminating sequences that lack glycoside hydrolase family 17 (GH 17) domain as well as the partial and closely identical sequences and obtained 14 full-length sequences. The sequences were categorized into 4 distinct classes (I-IV) based on their functional domains and C-terminal extension. Class III and IV which lack the carbohydrate-binding C-terminal X8 domain are the largest classes identified with 5 β-1,3-glucanase each while 4 β-1,3-glucanase contain a variable C-terminal X8 domain. Phylogenetic analysis showed the clustering of β-1,3-glucanases into six major clades (I-VI) based on the domains. Clades I and II were identified as the largest clades with 4 β-1,3-glucanase in each. Several paralogous clusters have been observed for H. brasiliensis indicating the gene family expansion within the species or in the immediate ancestors with possible species-specific function. Further functional characterization is necessary to select the suitable gene to be utilized in genetic improvement and the present study provides a platform for it.

Publisher

Persatuan Biologi Gunaan Malaysia

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3