Features of the distribution of events by the multiple of secondary particles depending on the energy of collision and the assymetricity of collising relativistic nuclei

Author:

Fedosimova A.I.ORCID, ,Lebedev I.A.ORCID,Dmitriyeva E.A.ORCID,Ibraimova S.A.ORCID,Bondar E.A.ORCID,Krassovitskiy P.M.ORCID, , , , ,

Abstract

To search for signals of the phase transition of matter from the hadronic state to the quark­gluon plasma, interactions with extreme characteristics are studied. The study of the dependence of the av­erage multiplicity on the projectile energy for sulfur and silicon nuclei with energies of 3.7 AGeV, 14 AGeV, and 200 AGeV has been carried out. Experimental data on inelastic interactions with the nuclei of the NIKFI BR­2 emulsion obtained at the SPS at CERN and at the Synchrophasotron at JINR. To take into account fluctuations in the initial conditions of the nucleus­nucleus interaction, the events were divided into central and peripheral ones. A comparative analysis of the average multiplicity with heavy and light nuclei of the photographic emulsion is presented. The multiplicity increase factor has an almost linear increase in energy (on the logarithmic axis) for all events, except for the central interactions of sulfur nuclei with heavy emulsion nuclei at 200 AGeV. These events are explosive events, which give a flux of secondary particles in a narrow range of average pseudo­rapidity and significantly shifted towards low values <η>. The analysis of events of complete destruction of the projectile nucleus is presented. Such events are considered as events in which the most favorable conditions are created for the formation of a quark­gluon plasma.

Publisher

al-Farabi Kazakh National University

Subject

Religious studies,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3