Exploring Hotspots of Drug Offences in Toronto: A Comparison of Four Local Spatial Cluster Detection Methods

Author:

Quick Matthew1,Law Jane2

Affiliation:

1. School of Planning, University of Waterloo

2. School of Planning, University of Waterloo, School of Public Health and Health Systems, University of Waterloo

Abstract

Spatial cluster detection is an exploratory spatial data analysis technique that identifies areas or groups of areas with disproportionately high risk. Several local cluster detection methods have been developed; yet no research has critiqued these methods as they contribute to spatial studies of crime. This study aims to identify the locations of drug offence hotspots in Toronto and compare the clusters detected through four methods: (1) spatial scan statistic – Euclidean distance, (2) spatial scan statistic – non-Euclidean contiguity, (3) flexibly shaped scan statistic, and (4) local Moran's I. It was found that all methods detected clusters in the downtown, with fewer methods detecting clusters in the west and east of Toronto. It was observed that the spatial scan statistic detected the largest and most circular clusters, making it a suitable tool to inform general policing initiatives and highlight possible variables to be included in confirmatory research. The local Moran's I method, in contrast, found the smallest and most compact clusters, indicating that it is an appropriate test for identifying areas where resource intensive crime prevention and policing efforts should be targeted.

Publisher

University of Toronto Press Inc. (UTPress)

Subject

Law,Social Sciences (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3