Combining Bibliometric and Social Network Analysis to Understand the Scholarly Publications on Artificial Intelligence

Author:

Zhang Guijie1ORCID,Liang Yikai1ORCID,Wei Fangfang2ORCID

Affiliation:

1. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, China

2. Business School, University of Jinan, Jinan, China

Abstract

This article aims to conduct a comprehensive study employing bibliometric and social network analysis to explore scholarly publications in artificial intelligence (AI). A co-authorship network analysis of countries/regions and institutions, a thematic analysis based on the co-occurrence of keywords, and a Spearman rank correlation test of social network analysis are conducted using VOSviewer and SPSS, respectively. According to the research power analysis, the United States and China are the most significant contributors to the relevant publications and hold dominant positions in the co-authorship network. Universities play a crucial role in promoting and carrying out relevant research. AI has been increasingly applied to address new problems and challenges in various fields in recent years. The Spearman rank correlation analysis indicates that research performance in AI is significantly and positively correlated with social network indicators. This article reveals a systematic picture of the research landscape of AI, which can provide a potential guide for future research.

Publisher

University of Toronto Press Inc. (UTPress)

Subject

Media Technology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3