INFLUENCE OF COMPOSITE SPINDLE RAM ON MACHINE TOOL DYNAMIC STIFFNESS

Author:

KULISEK VIKTOR, ,KOLAR PETR,SMOLIK JAN,RUZICKA MILAN,JANOTA MIROSLAV,MACHALKA MARTIN, , , , ,

Abstract

Demands for improving machine tool productivity and accuracy can be addressed using alternative material structures with the potential to reduce the mass of moving bodies and decrease machine tool dynamic compliance. A useful option is to apply composite materials because they offer high damping and low density in comparison with steel or cast iron. The key question is how the stiffness and damping of a single composite or hybrid metal + composite component influences the behaviour of the machine tool. In this paper, simulation models for the prediction of machine tool dynamic compliance were prepared for a detailed analysis of a use case study using a hybrid and ductile iron spindle ram for a portal milling centre. A simplified model for the damping matrix formulation was assembled and the influence of the spindle ram damping on the dynamic compliance was tested along with stiffness and mass change, leading to conclusions about the effect of a single component redesign. The minor influence of the material damping of the hybrid structure is noted, and factors influencing the final dynamic compliance are discussed in detail.

Publisher

MM Publishing, s.r.o.

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3