STUDY ON SURFACE INTEGRITY AND ITS INFLUENCE ON HIGH TEMPERATURE FATIGUE BEHAVIOR WHEN TURNING POWDER METALLURGY NI-BASED SUPERALLOY

Author:

MA Zheng, ,DANG Jiaqiang,WANG Qi,MING Weiwei,AN Qinglong,CHEN Ming, , , , ,

Abstract

As a member of the latest generation of powder metallurgy Ni-based superalloy, FGH96 has already been widely applied in the manufacturing of aero-engines because of its distinguished mechanical performances. The surface integrity plays an essential role in the final fatigue life of the machined parts. However, surface modification induced by the machining process is inevitable, which profoundly affects the high temperature fatigue behavior of the manufactured part during the service lifetime. To cover the gap, the present work was carried out to specially study the surface integrity and its influence on high temperature fatigue behavior of powder metallurgy Ni-based superalloy when subjected to the mechanical turning process. The surface integrity, including surface morphology, micro-hardness, and depth-dependent residual stress, was initially characterized under different input parameters. High temperature fatigue tests were then conducted on the processed specimens to correlate the surface integrity and its fatigue behavior. Results showed that input parameters greatly influence the surface condition and thus the high temperature fatigue behavior. Poor integrity on machined surface leads to poor fatigue performance with typical fatigue fracture morphology, including crack initiation, propagation, and final fracture. While fine integrity on machined surface contributes to better fatigue performance. More interestingly, the fracture morphology in this situation shows similarity to the static tensile fracture, which presents shear failure along the direction of maximum shear stress.

Publisher

MM Publishing, s.r.o.

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3