A murine Staphylococcus aureus fracture-related infection model characterised by fracture non-union, staphylococcal abscess communities and myeloid-derived suppressor cells

Author:

Hofstee MI, ,Riool M,Gieling F,Stenger V,Constant C,Nehrbass D,Zeiter S,Richards RG,Zaat SAJ,Moriarty TF

Abstract

A fracture-related infection (FRI) is a serious complication that can occur after surgical fixation of bone fractures. Affected patients may encounter delayed healing and functional limitations. Although it is well established that Staphylococcus aureus (S. aureus) is the main causative pathogen of an FRI, the pathophysiology of an S. aureus-induced FRI is not well characterised over time. Therefore, an experimental study in mice comparing S. aureus-inoculated and non-inoculated groups was performed that particularly focused on staphylococcal abscess communities (SACs) and host cellular response. C57Bl/6N female mice received a double osteotomy of the femur, which was stabilised using a titanium 6-hole MouseFix locking plate and four screws. Animals were either S. aureus-inoculated or non-inoculated and euthanised between 1 and 28 d post-surgery. Histopathological evaluation showed normal bone healing for non-inoculated mice, whereas inoculated mice had no fracture consolidation and severe osteolysis. Within the bone marrow of inoculated mice, SACs were observed from 7 d, which increased in size and number over time. A fibrin pseudocapsule enclosed the SACs, which were surrounded by many Ly6G+ neutrophils with some Ly6C+ monocytes and F4/80+ macrophages, the majority of which were viable. The abscesses were encapsulated by fibrin(ogen), collagen and myofibroblasts, with regulatory T cells and M2 macrophages at the periphery. Only bone marrow monocytes and neutrophils of inoculated mice displayed functional suppression of T cells, indicative of myeloid-derived suppressor cells. The present study revealed that an FRI in mice is persistent over time and associated with osteolysis, SAC formation and an immunosuppressive environment.

Publisher

European Cells and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3