Bioengineered tooth emulation systems for regenerative and pharmacological purposes

Author:

Pagella P, ,Cordiale A,Marconi GD,Trubiani O,Rasponi M,Mitsiadis TA

Abstract

Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and “organ-on-a-chip” microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing.

Publisher

European Cells and Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3