Disrupting mechanical homeostasis promotes matrix metalloproteinase-13 mediated processing of neuron glial antigen 2 in mandibular condylar cartilage
-
Published:2023-05-08
Issue:
Volume:45
Page:113-130
-
ISSN:
-
Container-title:European Cells and Materials
-
language:
-
Short-container-title:eCM
Author:
Bagheri Varzaneh M,Zhao Y,Rozynek J,Han M,Reed DA
Abstract
Post-traumatic osteoarthritis in the temporomandibular joint (TMJ OA) is associated dysfunctional cellmatrix mediated signalling resulting from changes in the pericellular microenvironment after injury. Matrix metalloproteinase (MMP)-13 is a critical enzyme in biomineralisation and the progression of OA that can both degrade the extracellular matrix and modify extracellular receptors. This study focused on MMP-13 mediated changes in a transmembrane proteoglycan, Neuron Glial antigen 2 (NG2/CSPG4). NG2/CSPG4 is a receptor for type VI collagen and a known substrate for MMP-13. In healthy articular layer chondrocytes, NG2/CSPG4 is membrane bound but becomes internalised during TMJ OA. The objective of this study was to determine if MMP-13 contributed to the cleavage and internalisation of NG2/CSPG4 during mechanical loading and OA progression. Using preclinical and clinical samples, it was shown that MMP-13 was present in a spatiotemporally consistent pattern with NG2/CSPG4 internalisation during TMJ OA. In vitro, it was illustrated that inhibiting MMP-13 prevented retention of the NG2/CSPG4 ectodomain in the extracellular matrix. Inhibiting MMP-13 promoted the accumulation of membrane-associated NG2/CSPG4 but did not affect the formation of mechanical-loading dependent variant specific fragments of the ectodomain. MMP- 13 mediated cleavage of NG2/CSPG4 is necessary to initiate clathrin-mediated internalisation of the NG2/ CSPG4 intracellular domain following mechanical loading. This mechanically sensitive MMP-13-NG2/CSPG4 axis affected the expression of key mineralisation and OA genes including bone morphogenetic protein 2, and parathyroid hormone-related protein. Together, these findings implicated MMP-13 mediated cleavage of NG2/CSPG4 in the mechanical homeostasis of mandibular condylar cartilage during the progression of degenerative arthropathies such as OA.
Publisher
European Cells and Materials
Subject
General Medicine,Automotive Engineering,General Medicine,General Medicine,General Medicine,General Medicine,Pharmacology (medical),General Earth and Planetary Sciences,General Environmental Science,General Materials Science,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献